Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Anesthesiology ; 139(6): 815-826, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566686

RESUMO

BACKGROUND: Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS: Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS: Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS: Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes.


Assuntos
Síndrome do Desconforto Respiratório , Tomografia Computadorizada por Raios X , Masculino , Feminino , Suínos , Animais , Impedância Elétrica , Síndrome do Desconforto Respiratório/terapia , Pulmão , Perfusão , Tomografia/métodos
2.
Curr Oncol ; 30(5): 4632-4647, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37232808

RESUMO

This review article gives an overview of the current state of the art of bladder cancer imaging and then discusses in depth the scientific and technical merit of a novel imaging approach, tracing its evolution from murine cancer models to cancer patients. While the poor resolution of soft tissue obtained by widely available imaging options such as abdominal sonography and radiation-based CT leaves them only suitable for measuring the gross tumor volume and bladder wall thickening, dynamic contrast-enhanced magnetic resolution imaging (DCE MRI) is demonstrably superior in resolving muscle invasion. However, major barriers still exist in its adoption. Instead of injection for DCE-MRI, intravesical contrast-enhanced MRI (ICE-MRI) instills Gadolinium chelate (Gadobutrol) together with trace amounts of superparamagnetic agents for measurement of tumor volume, depth, and aggressiveness. ICE-MRI leverages leaky tight junctions to accelerate passive paracellular diffusion of Gadobutrol (604.71 Daltons) by treading the paracellular ingress pathway of fluorescein sodium and of mitomycin (<400 Daltons) into bladder tumor. The soaring cost of diagnosis and care of bladder cancer could be mitigated by reducing the use of expensive operating room resources with a potential non-surgical imaging option for cancer surveillance, thereby reducing over-diagnosis and over-treatment and increasing organ preservation.


Assuntos
Compostos Organometálicos , Neoplasias da Bexiga Urinária , Humanos , Animais , Camundongos , Estadiamento de Neoplasias , Imageamento por Ressonância Magnética/métodos , Neoplasias da Bexiga Urinária/diagnóstico por imagem
3.
Methods ; 205: 200-209, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817338

RESUMO

BACKGROUND: Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantification of pathological COVID-19 lung tissue on chest Computed Tomography (CT) scans without the need for manually segmented training data. METHODS: We trained a cycle-consistent generative adversarial network (CycleGAN) to convert images of COVID-19 scans into their generated healthy equivalents. Subtraction of the generated healthy images from their corresponding original CT scans yielded maps of pathological tissue, without background lung parenchyma, fissures, airways, or vessels. We then used these maps to construct three-dimensional lesion segmentations. Using a validation dataset, Dice scores were computed for our lesion segmentations and other published segmentation networks using ground truth segmentations reviewed by radiologists. RESULTS: The COVID-to-Healthy generator eliminated high Hounsfield unit (HU) voxels within pulmonary lesions and replaced them with lower HU voxels. The generator did not distort normal anatomy such as vessels, airways, or fissures. The generated healthy images had higher gas content (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and lower tissue density (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001) than their corresponding original COVID-19 images, and they were not significantly different from those of the healthy images (P < 0.001). Using the validation dataset, lesion segmentations scored an average Dice score of 55.9, comparable to other weakly supervised networks that do require manual segmentations. CONCLUSION: Our CycleGAN model successfully segmented pulmonary lesions in mild and severe COVID-19 cases. Our model's performance was comparable to other published models; however, our model is unique in its ability to segment lesions without the need for manual segmentations.


Assuntos
COVID-19 , Processamento de Imagem Assistida por Computador , COVID-19/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos
4.
Anesthesiology ; 133(5): 1093-1105, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773690

RESUMO

BACKGROUND: Prone ventilation redistributes lung inflation along the gravitational axis; however, localized, nongravitational effects of body position are less well characterized. The authors hypothesize that positional inflation improvements follow both gravitational and nongravitational distributions. This study is a nonoverlapping reanalysis of previously published large animal data. METHODS: Five intubated, mechanically ventilated pigs were imaged before and after lung injury by tracheal injection of hydrochloric acid (2 ml/kg). Computed tomography scans were performed at 5 and 10 cm H2O positive end-expiratory pressure (PEEP) in both prone and supine positions. All paired prone-supine images were digitally aligned to each other. Each unit of lung tissue was assigned to three clusters (K-means) according to positional changes of its density and dimensions. The regional cluster distribution was analyzed. Units of tissue displaying lung recruitment were mapped. RESULTS: We characterized three tissue clusters on computed tomography: deflation (increased tissue density and contraction), limited response (stable density and volume), and reinflation (decreased density and expansion). The respective clusters occupied (mean ± SD including all studied conditions) 29.3 ± 12.9%, 47.6 ± 11.4%, and 23.1 ± 8.3% of total lung mass, with similar distributions before and after lung injury. Reinflation was slightly greater at higher PEEP after injury. Larger proportions of the reinflation cluster were contained in the dorsal versus ventral (86.4 ± 8.5% vs. 13.6 ± 8.5%, P < 0.001) and in the caudal versus cranial (63.4 ± 11.2% vs. 36.6 ± 11.2%, P < 0.001) regions of the lung. After injury, prone positioning recruited 64.5 ± 36.7 g of tissue (11.4 ± 6.7% of total lung mass) at lower PEEP, and 49.9 ± 12.9 g (8.9 ± 2.8% of total mass) at higher PEEP; more than 59.0% of this recruitment was caudal. CONCLUSIONS: During mechanical ventilation, lung reinflation and recruitment by the prone positioning were primarily localized in the dorso-caudal lung. The local effects of positioning in this lung region may determine its clinical efficacy.


Assuntos
Pulmão/fisiologia , Modelos Animais , Decúbito Ventral/fisiologia , Ventilação Pulmonar/fisiologia , Respiração Artificial/métodos , Decúbito Dorsal/fisiologia , Animais , Pulmão/diagnóstico por imagem , Suínos , Tomografia Computadorizada por Raios X/métodos
5.
Arthroscopy ; 20 Suppl 2: 77-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15243432

RESUMO

The use of thermal energy in the shoulder to tighten capsular tissues through collagen denaturation is well established. Although reported complication rates are low, the natural history of thermal manipulation to both target and collateral tissue is poorly defined. We report two cases of biceps tendon rupture after arthroscopic capsular shrinkage. Both patients were young, athletic men with normal long head biceps tendons at the time of surgery. Each patient experienced a complete tear of the long head with distal muscle retraction, resulting in a "Popeye" deformity, at 3 months postoperatively. One patient elected further surgery with biceps tenodesis. Both patients have returned to their athletic activities with minimal functional deficits.


Assuntos
Artroscopia/efeitos adversos , Temperatura Alta/efeitos adversos , Instabilidade Articular/cirurgia , Luxação do Ombro/cirurgia , Lesões do Ombro , Traumatismos dos Tendões , Adolescente , Basquetebol/lesões , Futebol Americano/lesões , Temperatura Alta/uso terapêutico , Humanos , Cápsula Articular/cirurgia , Instabilidade Articular/diagnóstico , Masculino , Radiografia , Recidiva , Reoperação , Lesões do Manguito Rotador , Ruptura/diagnóstico , Ruptura/etiologia , Articulação do Ombro/diagnóstico por imagem
6.
Buenos Aires; Medica Panamericana; 1994. 307 p. il. (62466).
Monografia em Espanhol | BINACIS | ID: bin-62466
7.
8.
Buenos Aires; Panamericana; 1994. xi,307 p. ilus. (58560).
Monografia em Espanhol | BINACIS | ID: bin-58560
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...